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Outline

* Hard and soft K-means
* Mixture Gaussian and Negative Binomial fitting

 Example of 1D hard K-means and 1D mixture gaussian fitting
* See Jupyter notebook (w09 section_jupyter_notebook.ipynb)



How do we categorize gene counts (i.e. high-dimensional data)
into cell type clusters?
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Clustering through K-means/expectation maximization (EM)

Advantages Disadvantages

e Simple to implement on a large dataset * Choice of K (elbow plot)

* Guarantee convergence * Depend on initial centroid positions (multiple
EM runs)

* Generalize to clusters of different shapes and
sizes * Influenced by outliers (remove outliers first)



Simple example of K-means clustering
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Hard vs. Soft K-means

e Assume we have multi-dimensional data X. For each X;fori=1, 2, ..., N, it has Z dimensions (e.g.

each cell i has gene expression counts of Z genes). We set K clusters.

Hard K-means

Soft K-means
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(weighted mean of X/'s)

Step 1: Assign data randomly and ~ ZieCk X,
calculate centroids, i, Hiz = Gl
Step 2: Update cluster assighment Tik =
' = 2
based on distances, d;;, and update ire = ZZ(XiZ ~ M)t —>
centroids, Uy,
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Step 3: Set a criteria for convergence K N Check for convergence
(Objective function) min Z z dizk e Same cluster assignment
k=1i=1

* Same centroid position (set a threshold)

Step 4: Run multiple times, choose the optimal objective function and corresponding cluster assignment

Hard K-means

If a point is close to two clusters, we
force it to be in one cluster

Soft K-means

Adjust “stiffness” B

B > oo, same as hard K-means
B - 0, meaningless




What to do with an empty cluster?

* Option 1: reinitialize centroid randomly
* Option 2: assign the farthest point as the new centroid



Mixture model

* Q components (do not need to be the same distribution) with probability

T, forg=1,2,..Q
* 1y = P(q | 8) where 8 is the model parameter(s) and Y, m, =1
* P(X;,q160) =P(X;1q,0)-P(q|0) =mq-P(X;|q,0)
*P(X;10) =2qP(X;,q|0)=X,ms-P(X;|q,0)

e P(cell type | datai) = P(q | X;, 8 ) distribution -[

Gaussian

Negative Binomial (RNA-seq)



Soft K-means with mixture model

Soft K-means with mixture model

Step 1: Assign data randomly and

. Centroids have initial 7,
calculate centroids, u,

Step 2: Update cluster assignment P(q | X, 0) = P(X;,q|0) __Tq- P(X;|q, 9,)
based on P(q | X;, 0) for each g PX;10) Xgmq - -PXilq,0)

* X;is most likely to be in g with largest P(q | X;, 6)

:ZiXi'P(C”XirH) :ZiP(CHXi»Q)

Step 3: Update g, , Uq > P(qlX,0) g N




Soft K-means with mixture model

Soft K-means with mixture model

Step 4: Set a criteria for

convergence (objective function) max P(X | 8) or min—logP(X|6)

Px16)=| | Px;10) (i.i.d)

=[[> m-Peiiq0)
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—logP(X | 0) = —log(‘ ‘Z T, -P(Xilq,9)>
i =g
= —Zlog(Z g - PO | q,e>>
i q
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Depend on what distribution we
Step 5: Run multiple times, choose the optimal cluster assignment model the data with




Log-likelihood implementation

—logP(X | 60) = —log (Hizqnq -P(X; | q, 9))

= —zilog (anq -P(X; | q, 0))
l

log|m1P(X; | 61) + -+ moP(X; | 6)]

— log[elog(nlp(xi | 1)) + .o 4 elog(nQP(Xi | BQ))]

|

scipy.special.logsumexp () :
* |nput: anarray X
* Compute: log ), ,exe”*



P(X;|q,0)

e Gaussian distribution P(X; | ug, 0,) = 1 exp ~ (Xi—ug)*
o V2ma, 20¢

* Negative binomial distribution (RNA-seq count data)

* Models the number of failures in a sequence of i.i.d. Bernoulli trials (with
success rate p) before n successes occur

* Let X be the number of failures, X ~ NB(n,p)

k+n-—1
n—1

P(X=k|n,p)=( )(1—19)""19”

* Each cell X; has the probability in cluster g with NB(n, p) where

1 1
n=-—, p

¢

_ import scipy.stats
1+u, ¢ scipy.stats.nbinom.logpmf (x, n, p)

models dispersion updated in each iteration



