Section 9: K-means and Gaussian Mixture Models

MCB 112

11/09/2024

(Adapted from 2022 notes)

Outline

- Hard and soft K-means
- Mixture Gaussian and Negative Binomial fitting
- Example of 1D hard K-means and 1D mixture gaussian fitting
 - See Jupyter notebook (w09_section_jupyter_notebook.ipynb)

How do we categorize gene counts (i.e. high-dimensional data) into cell type clusters?

Clustering through K-means/expectation maximization (EM)

<u>Advantages</u>

- Simple to implement on a large dataset
- Guarantee convergence
- Generalize to clusters of different shapes and sizes

<u>Disadvantages</u>

- Choice of K (elbow plot)
- Depend on initial centroid positions (multiple EM runs)
- Influenced by outliers (remove outliers first)

Simple example of K-means clustering

Ground Truth

Step 1: Choose K and

 Assign data randomly to clusters and calculate centroids (shown here)

OR

Randomly sample centroids and assign data to closest centroids

Our Data

Step 2: Calculate the distance d_{ik} between each data point i and each cluster k. Update cluster assignment by choosing the closest cluster.

<u>Step 3</u>: Update centroids and iterate until convergence.

Hard vs. Soft K-means

• Assume we have multi-dimensional data X. For each X_i for i = 1, 2, ..., N, it has Z dimensions (e.g. each cell i has gene expression counts of Z genes). We set K clusters.

Hard K-means

Soft K-means

Step 1: Assign data randomly and calculate centroids, μ_{kz}

Step 2: Update cluster assignment based on distances, d_{ik} , and update centroids, μ_{kz}

 $\mu_{kz} = \frac{\sum_{i \in C_k} X_{iz}}{|C_k|}$

$$\mu_{kz} = \frac{\sum_{i \in C_k} X_{iz}}{|C_k|}$$

where $\sum_{k} r_{ik} = 1$ for each i

Step 3: Set a criteria for convergence (objective function)

$$\min \sum_{k=1}^{K} \sum_{i=1}^{N} d_{ik}^{2} \quad \frac{\text{Check for convergence}}{\text{Same cluster assignment}}$$
• Same centroid position (s

- Same centroid position (set a threshold)

Step 4: Run multiple times, choose the optimal objective function and corresponding cluster assignment

Hard K-means If a point is close to two clusters, we force it to be in one cluster

Soft K-means

Adjust "stiffness" β

- $\beta \rightarrow \infty$, same as hard K-means
- $\beta \rightarrow 0$, meaningless

What to do with an empty cluster?

- Option 1: reinitialize centroid randomly
- Option 2: assign the farthest point as the new centroid

Mixture model

- Q components (do not need to be the same distribution) with probability π_q for q=1,2,...,Q
- $\pi_q = P(q \mid \theta)$ where θ is the model parameter(s) and $\sum_q \pi_q = 1$
- $P(X_i, q \mid \theta) = P(X_i \mid q, \theta) \cdot P(q \mid \theta) = \pi_q \cdot P(X_i \mid q, \theta)$
- $P(X_i \mid \theta) = \sum_q P(X_i, q \mid \theta) = \sum_q \pi_q \cdot P(X_i \mid q, \theta)$
- $P(\text{cell type} \mid \text{data } i) = P(q \mid X_i, \theta) \rightarrow \text{distribution} \begin{cases} \text{Gaussian} \\ \text{Negative Binomial (RNA-seq)} \end{cases}$

Soft K-means with mixture model

Soft K-means with mixture model

Step 1: Assign data randomly and calculate centroids, μ_q

Step 2: Update cluster assignment based on $P(q \mid X_i, \theta)$ for each q

Step 3: Update μ_q , π_q

Centroids have initial π_q

$$P(q \mid X_i, \theta) = \frac{P(X_i, q \mid \theta)}{P(X_i \mid \theta)} = \frac{\pi_q \cdot P(X_i \mid q, \theta)}{\sum_{q'} \pi_{q'} \cdot P(X_i \mid q', \theta)}$$

• X_i is most likely to be in q with largest $P(q \mid X_i, \theta)$

$$\mu_q = \frac{\sum_i X_i \cdot P(q \mid X_i, \theta)}{\sum_i P(q \mid X_i, \theta)} , \qquad \pi_q = \frac{\sum_i P(q \mid X_i, \theta)}{N}$$

Soft K-means with mixture model

Soft K-means with mixture model

Step 4: Set a criteria for convergence (objective function)

$$\max P(X \mid \theta) \quad \text{or } \min -\log P(X \mid \theta)$$

$$P(X \mid \theta) = \prod_{i} P(X_{i} \mid \theta) \qquad (i.i.d)$$

$$= \prod_{i} \left(\sum_{q} P(X_{i}, q \mid \theta) \right)$$

$$= \prod_{i} \sum_{q} \pi_{q} \cdot P(X_{i} \mid q, \theta)$$

$$-\log P(X \mid \theta) = -\log \left(\prod_{i} \sum_{q} \pi_{q} \cdot P(X_{i} \mid q, \theta) \right)$$

$$= -\sum_{i} \log \left(\sum_{q} \pi_{q} \cdot P(X_{i} \mid q, \theta) \right)$$

Depend on what distribution we model the data with

Log-likelihood implementation

$$-\log P(X \mid \theta) = -\log \left(\prod_{i} \sum_{q} \pi_{q} \cdot P(X_{i} \mid q, \theta) \right)$$

$$= -\sum_{i} \log \left(\sum_{q} \pi_{q} \cdot P(X_{i} \mid q, \theta) \right)$$

$$\log \left[\pi_{1} P(X_{i} \mid \theta_{1}) + \dots + \pi_{Q} P(X_{i} \mid \theta_{Q}) \right]$$

$$= \log \left[e^{\log(\pi_{1} P(X_{i} \mid \pi_{1}))} + \dots + e^{\log(\pi_{Q} P(X_{i} \mid \theta_{Q}))} \right]$$

$$\text{scipy.special.logsumexp():}$$
• Input: an array X

• Compute: $\log \sum_{x \in X} e^x$

$$P(X_i \mid q, \theta)$$

Gaussian distribution

$$P(X_i \mid \mu_q, \sigma_q) = \frac{1}{\sqrt{2\pi}\sigma_q} \exp\left(-\frac{(X_i - \mu_q)^2}{2\sigma_q^2}\right)$$

- Negative binomial distribution (RNA-seq count data)
 - Models the number of failures in a sequence of i.i.d. Bernoulli trials (with success rate *p*) before *n* successes occur
 - Let X be the number of failures, $X \sim NB(n, p)$

$$P(X = k \mid n, p) = {k + n - 1 \choose n - 1} (1 - p)^k p^n$$

• Each cell X_i has the probability in cluster q with NB(n, p) where

$$n = \frac{1}{\phi}, \qquad p = \frac{1}{1 + \mu_q \cdot \phi}$$

import scipy.stats
scipy.stats.nbinom.logpmf(x, n, p)